
Implementation of Collocation Extraction in

Unitex

B. Burak Arslan

September 12, 2007

Abstract

Collocation extraction is an elaborate problem in the �eld of corpus lin-

guistics that requires both statistical and linguistic information in order to be

successful. The problem is attracting more attention as the importance of col-

locations, (aka multi-word expressions) is recognized by the NLP community.

In this report, I present the work that I reviewed, and the Colloc module

that was the result of this work, by explaining reasons behind taken decisions

during the implementation, and of course, what remains to be done.

Résumé

L'extraction des collocations est un problème compliqué du domaine de

la linguistique de corpus qui exige l'utilisation de l'information statistique

autant que linguistique a�n d'obtenir des résultats satisfaisants. Au fur et à

mesure que l'importance des collocations (également Multi-Word Expressions

ou MWE) est perçue par la communaute du TLN, ce problème attire davantage

l'attention. Dans cette présentation de stage, je présente le travail que j'ai

examiné, ainsi que le module Colloc qui en est le résultat, en expliquant les

raisons des décisions prises pendant l'implémentation, et bien sûr, ce qu'il reste

à faire.

1 Introduction

The term collocation (aka compound word or multi-word expression) is used to
represent groups of words that either have slightly di�erent meanings when used
together, or have become idiosyncratic with heavy use. (e.g. we say �tra�c lights�,
not �tra�c regulators�, nor ��ow routers�) Their importance were �rst noticed by
foreign language teachers and translators, as most of the time collocations are rec-
ognized as expressions that, when translated word-by-word, stand out as awkward
at best, for a native speaker of the target language 1.

1e.g. think about the direct translation of the collocation �dead serious� to any other language
you know

1



Another important property of the collocations is the fact that they are language
dependent and can only be learned by observing their occurrence in language use;
they are otherwise not predictable[4]. So, collocations can't be generated from a
dictionary of simple words, they can only be extracted from large corpora.

When looking for a more formal de�nition, one observes that many were proposed
during the course of the research done on this topic.

Further study of the collocations in the pre-computing era showed that colloca-
tions have particular statistical distributions[6]. Basing on this information, collo-
cations are de�ned to be �recurrent combinations of words that co-occur more often
than expected by chance and that correspond to arbitrary word usages�. While this
purely statistical de�nition was seemingly correct, later research has shown that it
is extremely di�cult to extract collocations by purely statistical tests.[1].

According to a more recent work collocations should rather be de�ned as: �id-
iosyncratic interpretations that cross word boundaries�[3], which is a more accurate,
but much more vague de�nition which is harder to track computationally.

There are many types of collocations which are generally classi�ed basing on
their behaviour in real-world corpora. We can say that these types vary between
two extremes, based on their rigidness in form. Some collocations are simply words-
with-spaces, which are simply words that always follow each other, and receive no
morphosyntactic modi�cation no matter the context. These types of collocations are
the easiest to extract, especially when they are statistically distinguisable. On the
other extreme are collocations that vary wildly in form depending on their context.

2 Design of a Collocation Extraction System

Generally it all boils down to two main issues to be resolved in order to implement
a robust collocation extraction system:

1. There is no general form that de�nes all collocations.

This also means that one given collocation may be observed under di�erent
forms in a corpus. For example, the collocation �to make a decision� may
appear as �the decisions he made�, or �he made an important decision�, or
�he is about to make a decision�. So, a collocation system should incorporate
lexical and syntactical knowledge in order to prevent statistical information
from fragmenting, and should be robust to such heavy alterations in the form.

2. As said above, not all collocations can be extracted by adopting purely sta-
tistical methods, so other properties of collocations should be exploited as
well.

While it is accepted this sparseness is the result of the nature of the colloca-
tions, it is partly due to the existance of thematic collocations2 as well.

2which are what makes up the lingo used by people that are somehow organized around a com-
mon social or professional activity, and are only encountered in corpora that share that particular
theme

2



Basically, all of the collocation extraction systems that I reviewed work in three
steps:

1. Identifying two-word collocation candidates

2. Eliminating them

3. Combining them to collocations that may span more words than two.

The de�ning steps being identi�cation and elimination, the two may be undis-
tinguishable. Two main approaches exist:

Deep parsing: Apply syntactic analysis to the text (using a deep parser like Fips[7])
and extract collocation candidates basing on relations between words [5]. This
is a relatively complicated approach that requires a full-blown grammar and
its parser for the target language.

Shallow Parsing: When working on raw text, it is always a good idea to do some
preprocessing in order to normalize the data at hand. So, operations like mark-
ing sentence boundaries, lemmatization, POS-tagging etc. simpli�es greatly
the lives of processess that may follow[6]. These operations are called shal-
low parsing operations, because they don't seek to obtain the structure of the
sentence(s).

While shallow parsing approach is simpler to adopt, because it makes use of
less linguistic information, it generates more bogus data. Smadja, in his work[6],
introduces limits such as de�ning the �neighborhood of a word� to a small number
in order to cope with this fact. Seretan and Wehrli argue, in [5], that this limit is
too low. They should be right, because in fact, such limits are rather arti�cal that
are put because of practical reasons (limits of modern personal computers) and not
algorithmic ones.

I chose to take the path of shallow parsing by making use of Unitex' various
facilities, but tried not to introduce any arti�cal constraints for simplifying memory
management.

2.1 Implementation Details

At �rst, the raw corpus is preprocessed via Unitex' various tools. These tools apply
the following operations on the raw corpus:

1. Normalization

2. Tokenization

3. Detection of Sentence Boundaries

4. Lemmatization/POS Tagging

3



5. Identi�cation of MWE's of the sort �words-with-spaces�. Thanks to the lemma-
tization operation, this process can also capture MWE's that may receive a
few lexical alterations. (i.e. the collocation part of speech that may be seen
like parts of speech in some places is also recognized) Colloc tries its best to
ignore these combined states when encountered in the text automata in order
to eliminate invalid pairs they cause.

This string of operations results in a text automata that results in a kind of
matrix where for every word wi, there is an interpretation si,j with j mostly bigger
than 1.

Colloc commutatively combines, than counts these di�erent interpretations two
by two, never combining two di�erent interpretations of the same word. This is
where the memory needs may be more than typical; so some precautions are needed
to keep the computing environment sane. Colloc contains a user-con�gurable so-
lution which is what I call compacting: Assuming that a N phrase subset of the
corpus exhibits the same statistical properties as the whole corpus itself, Colloc
may delete, every N sententences, combinations that have frequency values below

(i− s)
t

e

where

i is the current number of the sentence

s is the number of the �rst sentence

t is the threshold value

e is the number of the last sentence

This algorithm deletes entries that will supposedly be below the user-speci�ed
threshold in the end of the computation, thus resulting in a much more e�cient
memory usage. Note that this is optional behaviour that is needed to be enabled
via the command line arguments passed to the Colloc executable.

Another precaution is to ignore part of the information that comes from the
DELA dictionary entries. Split in levels 0 through 3 in the following manner, it
helps the user keep the memory usage to a minimum by discarding information that
is not needed.

Level 0 Keeps only lemmatized form:

eg. Paris

Level 1 lemmatized form with POS:

eg. Paris.N

Level 2 lemmatized form with POS and additional semantic info:

eg. Paris.N+PR+DetZ+Toponyme+Ville+IsoFR

Level 3 Full DELA form:

eg. Paris.N+PR+DetZ+Toponyme+Ville+IsoFR:ms:fs

4



2.2 What remains to be done

Actually, what is done until today in this project barely scratches the face of the col-
location extraction problem. Complex linguistic operations are needed to be applied
to corpora in order to produce competitive results with other work on collocation
extraction.

Detection of boundaries of subordinate clauses A �rst step towards obtain-
ing safer word pairs is to combine words that are only in the same subordinate
clause in a complex sentence. According to my observations, collocations do
not seem to cross subordinate boundaries in a random complex sentence, if
they are not the simple sentences themselves. While the problem of detec-
tion of the boundaries of subordinate clause(s) in a complex sentence remains
mostly an open problem, experiences with a restricted corpus with a simpler
subordinate boundary detection system deserves attention. Such a system
would drastically reduce the number of bogus combinations, increasing the
success rate of the Colloc module and also resulting in remarkable perfor-
mance gains.

Uni�cation Even after eliminating as much bogus pairs as possible, one will still
end up with invalid word pairs. By invalid, I mean pairs like le table or pairs
that are statistically very signi�cant like le le, le du which are out-and-out
wrong. Such pairs are possible, as we are combining all of the words of a
sentence in pairs. So, applying linguistic operations like uni�cation will result
in pairs of much higher quality.

Disambiguation Combinatorial explosion while processing candidates is also due
to the fact that more than one interpretation exists for a surface string. So,
elimination of incorrect or inappropriate parses will also help increase the
e�ciency of the program. For example, the pair le.DET la.DET is invalid,
(which occurs quite frequently in a French corpus) whereas le.DET la.N should
be kept.

Smarter thresholding Thresholding is an e�ective elimination method when deal-
ing with frequency data. An analysis of the �rst 30.485 sentences of the lm943

corpus shows that 85% of 4.241.598 pairs have frequencies ≤ 3. 4

The weakness of thresholding is its mercilessness. While this method is a
very simple and e�ective way of eliminating most of the pairs that can not be
considered as collocations one way or the other, one should either:

1. Adopt a reliable method of determining this threshold which should es-
pecially tune itself according to the size of the corpora at hand, or

2. Not rely on thresholding at all and use it as just as a simple �ltering
mechanism.

3Le Monde '94, a 843.000 sentence corpus of modern French
4An environment for R[2] is saved in Unitex-C++/build directory, in case one seeks to conduct

further statistical analysis. Also see the script make_environment that comes with this document
which creates this environment from scratch.

5



Combining pairs There exist collocations that span more than two words. So, a
combination algorithm should be implemented in order to detect such colloca-
tions. Note that the current data structure that holds collocation candidates
needs to be extended for this purpose because the information about the pairs'
origins is currently discarded.

3 Other Contributions

During my time in Marne-la-Vallée University, I have made several other contribu-
tions to the Unitex project.

3.1 Memory Management

A great deal of my time was spent on optimizing memory usage. I have tried many
libraries for this goal, and now two of them are used in Unitex. One is Judy and
the other is BerkeleyDB.

Both are associative arrays of some sort, performing mapping between key-value
pairs (which are arbitrary-length binary data). The key di�erence is that Judy is
optimized to be fast, and for in-memory use, while BerkeleyDB is designed as an
embedded database that has data security as a �rst priority instead of speed. BDB's
interesting feature was its possibility to be con�gured as an in-memory associative
array, which, once a pre-de�ned memory limit was reached, started to cache data to
disk. While it kept the operating system quite happy, it did not result in a noticable
performance increase. BDB is a complex library with many con�guration options,
so it may be possible to further optimize the BDB con�guration in order to obtain
more subtle performance gains. That's why I did not drop the BDB support, and
actually implemented a thin abstraction layer on top of Judy and BDB, (available
in the form of array_* functions in Array.{ h,cpp }) that uses only one of them
depending on a compilation �ag given in the Makefile.

Another contribution of mine was a read only �le bu�er that is designed to
work on large �les. This got required in Freq, my introductory project to Unitex
(cf next section). With its buffer_* functions, one can access an arbitrarily large
�le, making sure that the memory usage is never more than was speci�ed initially
when initializing the bu�er. It is optimized to reduce �le reads in cases where
sequential access to �le is needed. It can be found in Buffer_ng.{h,cpp}. When
the Buffer_ng.cpp �le is compiled with -DBUFFER_NG_TEST option as a standalone
executable, it results in a binary that demonstrates the behaviour of Buffer_ng

in di�erent cases. Instead of using direct system calls, I have used standard �le
functions in order to increase portability (maybe sacri�cing some performance in
*nix systems).

3.2 Frequency Computation

I was introduced to the Unitex project by implementing a frequency computation
module. It takes as input the concord.ind �le produced by the Locate module
and the text.cod �le produced by the tokenizer, it displays the frequency of all the
tokens in the vicinity of the given token(s) in the concord.ind �le.

6



References

[1] Timothy Baldwin and Aline Villavicencio. Extracting the unextractable: a case
study on verb-particles. In COLING-02: proceeding of the 6th conference on
Natural language learning, pages 1�7, Morristown, NJ, USA, 2002. Association
for Computational Linguistics.

[2] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2007.
ISBN 3-900051-07-0.

[3] Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann A. Copestake, and Dan
Flickinger. Multiword expressions: A pain in the neck for nlp. In CICLing,
pages 1�15, 2002.

[4] Violeta Seretan, Luka Nerima, and Eric Wehrli. Extraction of multi-word collo-
cations using syntactic bigram composition. In Proceedings of the Fourth Inter-
national Conference on Recent Advances in NLP (RANLP-2003), pages 424�431,
Borovets, Bulgaria, 2003.

[5] Violeta Seretan and Eric Wehrli. Accurate collocation extraction using a multi-
lingual parser. In Proceedings of the 21st International Conference on Computa-
tional Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics, pages 953�960, Sydney, Australia, July 2006. Association for Com-
putational Linguistics.

[6] Frank Smadja. Retrieving collocations from text: Xtract. Comput. Linguist.,
19(1):143�177, 1993.

[7] Eric Wehrli. Fips, a �deep� linguistic multilingual parser. In ACL 2007 Workshop
on Deep Linguistic Processing, pages 120�127, Prague, Czech Republic, June
2007. Association for Computational Linguistics.

7


	Introduction
	Design of a Collocation Extraction System
	Implementation Details
	What remains to be done

	Other Contributions
	Memory Management
	Frequency Computation


