
Frequencies of occurrence of entries and subcategorization frames in LGLex lexicon with
IRASUBCAT

Elsa Tolone1, Romina Altamirano1

1FAMAF, Universidad Nacional de Córdoba
elsa.tolone@univ-paris-est.fr, romina.altamirano@gmail.com

Abstract: We present a method for enlarge a lexicon (with frequencies information), that is useful for
parsing and others NLP applications. We show an example enlarging the verbal LGLex lexicon of French
[13], using several corpora extracted from the evaluation campaign for French parsers Passage [9]. To do
that, we use the results of the FRMG parser [11] with IRASUBCAT [2], a tool that automatically acquires
subcategorization frames from corpus in any language and that also allows to complete an existing
lexicon. We obtain the frequencies of occurrence for each input and each subcategorization frame for
14,068 distinct lemmas.

Keywords: Lexicon-Grammar, syntactic lexicon, French lexicon, subcategorization, frequency of
occurence.

1. Introduction
The volume of textual information available today makes the manual processing of information impossible, therefore
intelligent automatic processing becomes a necessity. In this article we describe how to improve a French lexicon using
a tool for automatic acquisition of subcategorization frames from corpora.

The overall objective is the natural language understanding, improved basic tools and resources for automatic
analysis of French. There are different applications, from information extraction to support second language learning.
The syntactic lexicons are basic resources in most advanced tasks of Natural Language Processing (NLP), since most of
the systems that have some ability to understand natural language required syntactic and semantic knowledge for
each predicate (verb, noun or adjective).

Lexicon-Grammar tables are currently one of the major sources of syntactic lexical information for the French
language [6]. Moreover, several Lexicon- Grammar tables exist for other languages, such as Italian, Brazilian
Portuguese, Modern Greek, Korean, Romanian, and others.

We improved the Lexicon-Grammar tables to make them usable in various NLP applications, in particular parsing
[13]. So we genrated a French syntactic lexicon for verbs, nouns playing the predicative role frozen expressions
including verbal and adjectival idioms, and adverbs from the Lexicon- Grammar tables, called LGLex [5].

Then, we converted the verbs and predicative nouns into the Alexina framework, that is the one of the Le fff lexicon
(Lexique des Formes Fléchies du Français – Lexicon of French inflected form) [10], a large-coverage morphological
and syntactic lexicon for French.

This enables its integration in the FRMG parser (French MetaGrammar) [11], a large-coverage deep parser for French,
based on Tree Adjoining Grammars (TAG), that usually relies on the Lefff. We evaluated the FRMG parser with the
resulting lexicon on the reference corpus of the evaluation campaign for French parsers EASy (Évaluation des
Analyseurs Syntaxiques du français) [15] and Passage (Produire des Annotations Syntaxiques à Grande Échelle) [16],
using a component integrated in the processing chain of FRMG which eliminates the ambiguity to consider only one
analysis per sentence.

In this article we present a method for enlarge a lexicon (with frequencies information) [14], that is useful for parsing
and others NLP applications. We show an example enlarging the verbal LGLex lexicon of French, using several corpora
extracted from the evaluation campaign for French parsers Passage [9]. To do that, we use the results of the FRMG parser
with the IRASUBCAT tool [2]. First we describe all lexical resources used in section 2: i.e, the Lexicon-Grammar tables,
the LGLex lexicon and the FRMG parser. Then, we present the tool IRASUBCAT in section 3. In section 4, we show how we
used this tool with verbal LGLex lexicon, explaining the experiment. We finish by explaining the work performed and
the next steps in section 5.

2. Lexical resources
First we describe what are the Lexicon-Grammar tables and we converted them into the LGLex lexicon. Then, we
describe the conversion into LGLex- Lefff syntactic lexicon to integrate them in the FRMG parser. Finally, we present the
format of a corpus processed by the FRMG parser.

32nd International Conference on Lexis and Grammar, September 10-14, 2013, Universidade do Algarve, Faro, Portugal. 1

2.1. The Lexicon-Grammar tables
Lexicon-Grammar tables are currently one of the major sources of lexical and syntactic information for the French
language. Their development was initiated as early as the 1970s by M. Gross1, at the LADL (Laboratoire d’Automatique
Documentaire et Linguistique) [6, 7], and then the LIGM (Laboratoire d’Informatique de Gaspard-Monge) at University
Paris-Est in France [3, 8].

Lexical information is represented in the form of tables. Each table puts together elements of a given category (for a
given language) that share a certain number of defining features, which usually concern subcategorization. These
elements form a class.

Tables are represented as matrices: each row corresponds to a lexical item of the corresponding class; each column
lists a feature that may be valid or not for the different members of the class; at the intersection of a row and a column,
the symbol + (resp.) indicates that the feature corresponding to the column is valid (resp. not valid) for the lexical−
entry corresponding to the row.

The resources described in this paper correspond to the Lexicon-Grammar tables of simple verbs, in which
previously implicit features have been made explicit2 for more convenient use in NLP. All tables are fully available3
under a free license (LGPL-LR).

2.2. The LGLex syntactic lexicon
The current version of French Lexicon-Grammar tables enables the use of their lexical data in NLP tools [12]. To this
end, we converted the tables into an exchange format, based on the same linguistic concepts as those handled in the
tables. This conversion is based on LGExtract: a generic tool for generating a syntactic lexicon for NLP from the
Lexicon-Grammar tables [5]. It relies, first off, on a global table of classes in which we added the missing features and,
second, on a single extraction script including all operations related to each feature to be performed for all tables.

Thanks to LGExtract, we generated a French lexicon for NLP from all Lexicon-Grammar tables and for most lexical-
grammatical categories: verbs, predicative nouns, idioms and adverbs. This syntactic lexicon is named LGLex [5, 13]. It
is manually evaluated and freely available4 under the LGPL-LR license in both plain text and XML format.

LGLex is currently composed of 13,895 verbal entries including 5,738 distinct entries (from 67 tables)4.

2.3. The LGLex-Lefff syntactic lexicon
The Lefff is a freely available and large-coverage morphological and syntactic lexicon for French [10]5. It relies on the
Alexina framework for the acquisition and modeling of morphological and syntactic lexicons. To represent lexical
information, an Alexina lexicon relies on a two-level architecture:
– the intensional lexicon associates (among others) an inflection table and a canonical subcategorization frame with
each entry and lists all possible redistributions from this frame;
– the compilation of the intensional lexicon into an extensional lexicon builds different entries for each inflected form of
the lemma and every possible redistribution.

We converted the verbs and predicative nouns of LGLex lexicon into the Alexina framework [15]. This enables its
integration in the FRMG parser a large-coverage deep parser for French, based on TAG, that usually relies on the Lefff.

The Alexina format lexicon extracted from LGLex is called LGLex-Lefff, to distinguish it from the Lefff. The
resulting verbal lexicon contains 22,060 entries for 5,736 distinct verb lemmas (on average, 3.85 entries per lemma). As
a comparison, the Lefff only contains 7,072 verbal entries for 6,818 distinct verb lemmas (on average, 1.04 entries per
lemma). The resulting lexicon extracted from LGLex, despite the fact that it describes fewer verbal lemmas, has a larger
coverage in terms of syntactic constructions and therefore is much more ambiguous. At the extensional level, the Lefff
has 361,268 entries whereas the LGLex-Lefff has 1,130,960 entries.

2.4. Format of processed corpus with the FRMG parser
This work allows the use of the linguistic data coded in Lexique-Grammaire tables for French to be used as a lexical
database for a French parser, in particular the FRMG parser [11]6, which is relied on a syntactic lexicon in the Alexina
format [15].

1 M. Gross takes as his starting point the study of simple French sentences. He thus takes the view that the minimum unit of meaning is the sentence.
The principle adopted is to identify simple sentences and study the transformations that they can support. Studied features for each of these sentences
are mainly formal features of syntax rather than semantics, which ensures reproducibility of tests [6]. However, some semantic features were taken
into account when they could be tested clearly.
2 In order to make previous implicit features explicit, we created a table of classes [12, 13]. Its role is to assign features when their value is constant
over a class, e.g. class defining features. Each row stands for a class and each column stands for a feature. Each cell corresponds to the validity of a
feature in a class. In particular, the table of French verbs classes is composed of 67 different classes and 556 features.
3 http://infolingu.univ-mlv.fr/english > Language Resources > Lexicon- Grammar > Download.
4 If a verb has several meanings, it is divided in several lexical items. For example, se rendre has two meanings, so two lexical items:
Jean s'est rendu à mon opinion (John finally accepted my opinion).
Vercingetorix s'est rendu à Cesar (Vercingetorix surrendered to Ceasar).
5 On-line distribution under the LGPL-LR license at http://gforge.inria.fr/ projects/alexina/.
6 FRMG is free software, like Lefff, available under the INRIA GForge: http://gforge. inria.fr/projects/mgkit/. It is also possible to
play with the chain of processing and visualizing the grammar FRMG on http://alpage.inria.fr/frmgdemo.

2

The integration of LGLex-Lefff in the FRMG parser is straightforward. The result is a variant of the FRMG parser, that
we shall call FRMGLGLex, to distinguish it from the standard FRMGLefff.

To use the results of the parsing in NLP applications of high-level, Forest utils7represents the forest of dependencies
in format XMLDep [11]. Basically, we represent in XMLDep format a graph of dependencies with nodes (lemmas),
grouped in clusters (forms), with arcs describing the syntactic dependencies between nodes.

3. IRASUBCAT

IRASUBCAT is a tool that acquires subcategorization information about the behaviour of any tag class (e.g., part of
speech, syntactic function, etc.) or combination of them, from corpora [1, 2]. We are interested in using it to acquire
information about verbs. It is aimed to address a variety of situations and needs, ranging from rich annotated corpora to
virtually raw text (because the tags to study can be selected in the configuration file). The characterization of linguistic
patterns associated to verbs will be correspondingly rich. The tool allows to customize most of the aspects of its
functioning, to adapt to different requirements of the users. Moreover, IRASUBCAT is platform-independent and open
source8.

IRASUBCAT takes as input a corpus in XML format. This corpus is expected to have some kind of annotation
associated to its elements, which will enrich the description of the patterns associated to verbs. The minimal required
annotation is that verbs are marked. If no other information is available, the form of words will be used to build the
patterns. If the corpus has rich annotation for its elements, the system can build the patterns with the value of attributes
or with a combination of them, even with lexical items. The only requirements are that verbs are marked, and that all
linguistic units to be considered to build the patterns are siblings in the XML tree.

The output of IRASUBCAT is a lexicon, also in XML format, where each of the verbs under inspection is associated to
a set of subcategorization patterns. A given pattern is associated to a given verb if the evidence found in the corpus
passes certain tests. Thresholds for these tests are defined by the user, so that precision can be prioritized over recall or
the other way round. In all cases, information about the evidence found and the result of each test is provided, so that it
can be easily assessed whether the threshold for each test has the expected effects, and it can be modified accordingly.
The lexicon also provides information about frequencies of occurrence for verbs, patterns, and their co-occurrences in
corpus.

Moreover, IRASUBCAT allows to integrate the output lexicon with a pre-existing one, merging information about
verbs and patterns with information that had been previously extracted, possibly from a different corpus or even from a
hand-built lexicon. The only requirement is that the lexicon is in the same format as IRASUBCAT output lexicon.

We designed IRASUBCAT to be adaptable in a variety of settings. The user can set the conditions for many aspects of
the tool, in order to extract different kinds of information for different representational purposes or from corpora with
different kinds of annotation. For example, the system accepts a wide range of levels of annotation in the input corpus,
and it is language independent. To guarantee that any language can be dealt with, the corpus needs to be codified in
UTF-8 format, in which virtually any existing natural language can be codified.

4. Experiment with IRASUBCAT and the LGLex lexicon of French
We want to use the results of FRMG parser on a big corpus with IRASUBCAT in order to improve the LGLex lexicon of
French, adding the frequencies of occurrence for each entry and each subcategorization frame. To do this, we must:
– choose a corpus with millons of words, also we just only need a small part of this corpus for the experiment;
– parse the corpus with the FRMG parser, with and without the LGLex lexicon (i.e. only with the Lefff lexicon) – results
with FRMGLGLex and with FRMGLefff;
– convert both the processed corpus and the LGLex lexicon into XML format, required by IRASUBCAT;
– use IRASUBCAT in order to add the frequencies of occurrence extracted from the big corpus into the LGLex lexicon.

4.1. The corpus
The processed corpus with FRMGLGLex (cf. 2.4 to see how we use the FRMG parser with the LGLex lexicon) used for the
experiment is the CPJ (Corpus Passage Jouet) with 100K sentences of AFP, Europarl, Wikipedia and Wikisources,
extracted from the corpus of the evaluation campaign (in 2009) for French parsers Passage [9].

4.2. Conversion into XML format
We created 2 programs in Python: one to convert the verbal LGLex lexicon in the same format as IRASUBCAT output
lexicon, another to convert the processed corpus CPJ with the FRMG parser in a format directly readable
by IRASUBCAT.

Conversion of the verbal LGLex lexicon:

7 Forest utils is a set of Perl scripts to convert between various formats for shared derivation forest produced by parsers for TAG:
https://gforge.inria.fr/ projects/lingwb/.
8 IRASUBCAT is available for download at http://www.cs.famaf.unc.edu.ar/ ~romina/irasubcat/.

3

The input is the verbal LGLex lexicon, or more precisely, the extensional lexicon of LGLex- Lefff lexicon, which
contains each inflected form of the lemma and every possible redistribution (cf. 2.3).

In the output lexicon converted into XML format as IRASUBCAT output lexicon (named lglex-lefff-IRASubcat.xml),
each lemma is associated to a set of subcategorization patterns. For example:

<pattern id="[’Suj:cln|sn’, ’Obj:sn’]"></pattern>
<pattern id="[’Suj:(cln|sn)’, ’Obl:de-sinf’]"></pattern>

The first pattern represents a subject which can be nominative clitic or noun phrase, and a direct object which is a
noun phrase. The second represents an optional subject (between parenthesis) with the same distribution as the first, and
an oblique (non-cliticizable) argument which is an infinitive clause introduced by a preposition de.

In fact, we simplify by omitting the realizations. So, we have only the syntactic functions (with the first letter in
lower case) because it’s more easy to find them in the processed corpus. We also ordered syntactic functions in
alphabetical order to allow the research of all the order in the processed corpus (see the option ORDER OF TAGS = NO
in 4.3).

For each lemma represented by his identifier (for example, verb=”achever ___V_1_1”, which corresponds to the 1st
entry in the verb class 1), a count of occurrences of this lemma is initialized to 0 (count_oc_verb=”0”). We extracted
the set of subcategorization patterns from all his inflected forms and all his redistributions and the number of different
pattern is indicated (for example, different_patterns=”6”). For each pattern ([’obj’, ’suj’], [’obl’, ’suj’], [’obl2’, ’suj’]
and [’obl’, ’obl2’]), a count of occurences of this pattern for this lemma and a count of occurences of this pattern for all
verbs are both initialized to 0 (count_w_verb=”0” total_count=”0”).

We have in total 14 068 distinct lemma. Here is a complete example of lglex-lefff-IRASubcat.xml (see the option
DICTIONARY EXISTING = lglex-lefff-IRASubcat.xml in 4.3)9:

<dictionary>
 <entry verb="achever___V_1_1" count_oc_verb="0">
 <tag name="fs" different_patterns="6">
 <pattern id="['obj', 'suj']" count_w_verb="0" total_count="0" rejected_patterns_freq_test="NO">
 </pattern>
 <pattern id="['obl', 'suj']" count_w_verb="0" total_count="0" rejected_patterns_freq_test="NO">
 </pattern>
 <pattern id="['obl2', 'suj']" count_w_verb="0" total_count="0" rejected_patterns_freq_test="NO">
 </pattern>
 <pattern id="['obl', 'obl2']" count_w_verb="0" total_count="0" rejected_patterns_freq_test="NO">
 </pattern>
 </tag>
 </entry>
</dictionary>

Conversion of the processed corpus with the FRMG parser:
The input is the processed corpus CPJ with the FRMG parser, more precisely, with FRMGLGLex, i.e. the FRMG parser with the
LGLex-Lefff lexicon. In the processed corpus CPJ, we represented a graph of dependencies with nodes (lemmas),
grouped in clusters (forms), with arcs describing the syntactic dependencies between nodes (cf. 2.4). So, we want to
extract only the useful information in a format directly readable by IRASUBCAT.

In the output in XML format (named CPJ-IRASubcat.xml), for each sentence of the corpus (for example,
<sentence ID10=”12” corpus=”frwikipedia_012” s=”12”>), we extracted the verbs (cat=”v”) with their identifiers
(for example, lemmaid=”achever___V_1_1”). For each verb, we extracted the syntactic functions and we indicated the
number of arguments (nb_fs=”2”) and then, each syntactic function (fs) one by one (for example, fs=”suj” for subject,
and fs=”obl2” for oblique).

Here is a complete example of CPJ-IRASubcat.xml:

<sentence ID="12" corpus="frwikipedia_012" s="12">
 <word lexica="achevée" lemma="achever" lemmaid="achever___V_1_1" cat="v" nb_fs="2">achevée</word>
 <word fs="suj"></word>
 <word fs="obl2"></word>
</sentence>

In this example, we can see that we decided to list all the syntactic functions after the verb. So, then we wanted to
use IRASUBCAT reading only the arguments after the verb, for example 3 arguments (in the practice, we have never found

9 We have only 4 different patterns if we consider only the syntactic functions, without the realizations.
10 We lowered id because if you have ID attribute at sentence level, the execution of IRASUBCAT produced a file with the ID’s of sentences that give
origin of the patterns in the result dictionary. We calculated the ID as the number of the sentence considering all corpus, whereas s is the number of
the sentence in the current corpus (here, Wikipedia Fr).

4

4 arguments). But the option LENGTH OF SIDE OF THE VERB FOR THE PATTERN = 3 (see in 4.3) allowed to read
the 3 arguments before and after the verb. So, we changed the code of IRASUBCAT to read only after the verb. The best
solution would be to add an other option, one to specify the number of arguments to read before the verb (LENGTH OF
RIGHT SIDE OF THE VERB FOR THE PATTERN = 0) and another one to specify the number of arguments to read
after the verb (LENGTH OF LEFT SIDE OF THE VERB FOR THE PATTERN = 3).

4.3. Using IRASUBCAT with LGLex
We changed the information in the configuration file to execute IRASUBCAT with our lexicon lglex-lefff-IRASubcat.xml
and our corpus CPJ-IRASubcat.xml (in UTF-8):

TO CONSIDER VERB LIST = NO
#Option NO is going to consider every verbs, put path of file if you want to consider only verbs of the list in the file.
DICTIONARY EXISTING = lglex-lefff-IRASubcat.xml
#Option NO is going to create a new dictionary, put path of dictionary exist if you want to actualize it.
LENGTH OF SIDE OF THE VERB FOR THE PATTERN = 3
#ALL is going to consider every scope, and 3 is going to consider 3 patterns ONLY at rigth of verb.
COMPLETE WITH WORD = NO
#Here NO, is not complete with anything, other word, is going to complete with this word.
ORDER OF TAGS = NO
#Here NO, is going not to consider the order of tags, put YES if you want to consider the order.
TARGET TAGS = fs
#We consider only the tag fs, which contains syntactic categories, put tag1,tag2,... if you want to consider all this tags, put NO if you
#only want to consider lexical items.
USE LEXICAL ITEMS = NO
#Put YES if you want to consider the lexical items instead of lemmas or syntactic categories specified in the target of tags.
INTRODUCE VERBAL MARK = NO
#Put YES if you want the system put the symbol "|" in the position of the verb.
COLAPSE PATTERNS = NO
#Put YES if you want the system can collapse pattern, identifying optional constituents.
MAX ITERATION FOR FIND COLAPSE PATTERNS = FALSE
#FALSE means that the system is going to collapse every patterns that it can, put a number if you want the system stops after n
#iterations.
MINIMAL ABSOLUTE VERBAL FREQUENCY = 0
#Here 0, is going to consider all verbs even if they occur few times, other number, is going to consider the verb only if it found n
#times.
MINIMAL RELATIVE FREQUENCY TO CONSIDER PATTERN = 0
#Here 0, is going to consider all co-occurrences of verbs with a pattern even if they occur few times, other number, is going to
#consider the pattern only if it found n times with the verb.
USE LIKELIHOOD RATIO TEST = NO
#Put YES to use Likelihood Ratio to filter co-occurrences.

The execution (with the command line: python IRASubcat.py CPJ-IRASubcat.xml11 cat=”v” sentence lemmaid12
config_CPJ.cfg13) create the file OutputDictionaryOrd.xml with the lexicon, the file info file with the statistics of
execution, and the file IdsSentencesOrigenDictionary.xml with the ID’s of sentences that give origin of the patterns in
OutputDictionaryOrd.xml.

Here is the previous example of lglex-lefff-IRASubcat.xml as it appears in OutputDictionaryOrd.xml:

<dictionary>
 <entry verb="achever___V_1_1" count_oc_verb="1">
 <tag name="fs" different_patterns="4">
 <pattern id="['obj', 'suj']" count_w_verb="0" total_count="1001" rejected_patterns_freq_test="NO">
 </pattern>
 <pattern id="['obl', 'suj']" count_w_verb="0" total_count="214" rejected_patterns_freq_test="NO">
 </pattern>
 <pattern id="['obl2', 'suj']" count_w_verb="1" total_count="325" rejected_patterns_freq_test="NO">
 </pattern>

11 The first argument (CPJ-IRASubcat.xml, see an example in 4.2) is the path of our corpus. Remember that this corpus need to be in UTF-8 in
XML format, the corpus can be in any language, IRASUBCAT needs is that the corpus have the verbs marked, like a characteristic in XML with a
particular value, but IRASUBCAT has the capability of take as input a rich corpus, with a lot of information about its items.
12 The arguments cat=”v” sentence lemmaid indicate how identify in the corpus which one is the characteristic (cat) and value (v) to find verbs, the
level father (sentence) of the level that have characteristics to study (that is the same level that have the characteristic for mark verbs), and the key of
the dictionary of output (the value of lemmaid, as for example achever___V_1_1 in 4.2). Note that lemmaid and cat=”v” need to be at level word
(which have father level sentence).
13 The fifth argument (config_CPJ.cfg) is the configuration file customized to accept our corpus and our kind of execution (cf. 4.3 for the details of
the configuration file).

5

 <pattern id="['obl', 'obl2']" count_w_verb="0" total_count="0" rejected_patterns_freq_test="NO">
 </pattern>
 </tag>
 </entry>
</dictionary>

We can see that the number of occurrences of the verb achever___V_1_1 in the corpus is 1 and the pattern is [’obl2’,
’suj’]. For this pattern, we have in total 325 occurences in the corpus for all verbs.

Here is an example of IdsSentencesOrigenDictionary.xml:

<ids_from>
 <entry verb="achever___V_1_1" total_count="1">
 <tag name="fs">
 <pattern id="['obj', 'suj']">
 <s_list>
 []
 </s_list>
 </pattern>
 <pattern id="['obl', 'suj']">
 <s_list>
 []
 </s_list>
 </pattern>
 <pattern id="['obl2', 'suj']">
 <s_list>
 ['12']
 </s_list>
 </pattern>
 <pattern id="['obl', 'obl2']">
 <s_list>
 []
 </s_list>
 </pattern>
 </tag>
 </entry>
</ids_from>

We can see that the occurence of verb=”achever___V_1_1” with the pattern [’obl2’, ’suj’] is in the sentence [’12’]
as we have seen in 4.2.

Here is the information into info file for an extract of the CPJ:

Time: 271.12977194786072 seconds or 4.5188295324643457 minits
Total count of sentence: 1219
Total count verbs: 2020
Total different verbs: 14125
Total different patterns: 3
Total patterns rejected by frequence test: 0
Total patterns rejected by Likelihood Ratio test: 0
Total patterns 'NO_DECIDE' Likelihood Ratio test: 0
Total patterns accepted by Likelihood Ratio test: 0

The frequencies indicated in OutputDictionaryOrd.xml allow us to know the total number of occurences of each
pattern in the corpus (table 1). We don’t indicate the patterns which never appear.

The frequencies indicated in IdsSentencesOrigenDictionary.xml allow us to calculate the number of verbs
associated with each total number of occurences of this verbs (table 2). We indicate the verb when there is only one
verb.

6

pattern total_count

[’obj’, ’suj’] 1001

[’obl2’, ’suj’] 325

[’obl’, ’suj’] 214

[’att’, ’suj’] 142

[’loc’, ’suj’] 92

[’obj’, ’suj’] 91

[’suj’] 62

[’objde’,
’suj’]

55

[’obj’] 26

[’dloc’, ’suj’] 11

others 0

Table 1. Number of occurrences of patterns

verb or number of verbs total_count

être_____2 63

pouvoir___V_1_88 60

devoir___V_1_38 37

faire_____2 22

dire___V_9_130 19

vouloir___V_15_82 17

2 16

avoir___V_37E_10 13

2 12

3 10

4 9

3 8

8 7

12 6

14 5

30 4

63 3

192 2

740 1

13 043 0

Table 2. Number of occurrences of verbs

7

5. Conclusion
Using IRASUBCAT with the converted lexicon and the relevant information extracted of the processed corpus we can
complete the lexicon with the frequencies of occurrence for each verb and each syntactic function. The processed
corpus is the results of the FRMG parser with LGLex lexicon, so it could find wrong sense.

The next step is to consider the information on realizations, that we must extract from processed corpus, but it is not
a straightforward task. Then we have to use the FRMG parser with Lefff lexicon only, without the LGLex lexicon
influences the results. We could also use IRASUBCAT with another parser which is statistical, such as MaltParser,
MSTParser, or Berkeley Parser [4]. And we could do a comparison using the original lexicon and the enlarged lexicon
with that different parsers to verify that the accuracy is better using more information.

References
1. Ivana Romina Altamirano. IRASUBCAT: Un sistema para adquisición automática de marcos de subcategorización a

partir de corpus. Master’s thesis, FaMAF, National University of Córdoba, Argentina, 2009. (71 pp.).
2. Ivana Romina Altamirano and Laura Alonso Alemany. IRASUBCAT, a highly parametrizable, language independent

tool for the acquisition of verbal subcategorization information from corpus. In Proceedings of the NAACL HLT
2010 Young Investigators Workshop on Computational Approaches to Languages of the Americas, pages 84–91,
Los Angeles, California, 2010.

3. Jean-Pierre Boons, Alain Guillet, and Christian Leclère. La structure des phrases simples en français : Constructions
intransitives. Droz, Geneva, Switzerland, 1976.

4. Marie Candito, Joakim Nivre, Pascal Denis, and Enrique Henestroza Anguiano. Benchmarking of statistical
dependency parsers for french. In Proceedings of COLING’2010 (poster session), Beijing, China, 2010.

5. Matthieu Constant and Elsa Tolone. A generic tool to generate a lexicon for NLP from Lexicon-Grammar tables. In
Michele De Gioia, editor, Actes du 27e Colloque international sur le lexique et la grammaire (L’Aquila, 10-13
septembre 2008), Seconde partie, volume 1 of Lingue d’Europa e del Mediterraneo, Grammatica comparata,
pages 79–193. Aracne, Rome, Italy, 2010. ISBN 978-88-548-3166-7.

6. Maurice Gross. Méthodes en syntaxe : Régimes des constructions complétives. Hermann, Paris, France, 1975.
7. Maurice Gross. Constructing Lexicon-Grammars. Oxford University Press, Oxford, England, 1994.
8. Alain Guillet and Christian Leclère. La structure des phrases simples en français : Les constructions transitives

locatives. Droz, Geneva, Switzerland, 1992.
9. Olivier Hamon, Djamel Mostefa, Christelle Ayache, Patrick Paroubek, Anne Vilnat, and Eric de La Clergerie.

Passage: from French parser evaluation to large sized treebank. In Proceedings of the 6th Language Resource
and Evaluation Conference (LREC’08), Marrakech, Morocco, 2008.

10. Benoît Sagot. The Lefff, a freely available and large-coverage morphological and syntactic lexicon for French. In
Proceedings of the 7th Language Resources and Evaluation Conference (LREC’10), Valletta, Malta, 2010.

11. François Thomasset and Éric de La Clergerie. Comment obtenir plus des méta-grammaires. In Actes de la
Conférence sur le Traitement Automatique des Langues Naturelles (TALN’05), Dourdan, France, 2005.

12. Elsa Tolone. Les tables du Lexique-Grammaire au format TAL. In Actes de MajecSTIC 2009, Avignon, France,
2009. (8 pp.).

13. Elsa Tolone. Analyse syntaxique à l’aide des tables du Lexique-Grammaire français. Éditions Universitaires
Européenes, Saarbrücken, Germany, July 2012. ISBN 978-3-8381-8194-3 (352 pp.).

14. Elsa Tolone and Romina Altamirano. Adding frequencies to the LGLex lexicon with IRASUBCAT. In Proceedings of
ASAII’2013 (poster session), Córdoba, Argentina, 2013.

15. Elsa Tolone and Benoît Sagot. Using Lexicon-Grammar tables for French verbs in a large-coverage parser. In
Zygmunt Vetulani, editor, Human Language Technology. Challenges for Computer Science and Linguistics. 4th
Language and Technology Conference, LTC 2009, Pozna , Poland, November 6-8, 2009, Revised Selectedń
Papers, volume 6562 of Lecture Notes in Artificial Intelligence (LNAI), pages 183–191. Springer Verlag, 2011.
ISBN 978-3-642-20094-6.

16. Elsa Tolone, Benoît Sagot, and Éric de La Clergerie. Evaluating and improving syntactic lexica by plugging them
within a parser. In Proceedings of the 8th Language Resources and Evaluation Conference (LREC’12), Istanbul,
Turkey, 2012. (8 pp.).

8

